3.554 \(\int \frac{(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=148 \[ \frac{2 (a B+A b) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 (a B+A b) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 (5 a A+3 b B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(2*(5*a*A + 3*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(A*b + a*B)*Sqr
t[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*b*B*Sin[c + d*x])/(5*d*Sec[c + d*x]^(
3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.208288, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.226, Rules used = {2960, 3996, 3787, 3769, 3771, 2641, 2639} \[ \frac{2 (a B+A b) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 (a B+A b) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 (5 a A+3 b B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*(5*a*A + 3*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(A*b + a*B)*Sqr
t[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*b*B*Sin[c + d*x])/(5*d*Sec[c + d*x]^(
3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 2960

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\sqrt{\sec (c+d x)}} \, dx &=\int \frac{(b+a \sec (c+d x)) (B+A \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}-\frac{2}{5} \int \frac{-\frac{5}{2} (A b+a B)-\frac{1}{2} (5 a A+3 b B) \sec (c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}-(-A b-a B) \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx-\frac{1}{5} (-5 a A-3 b B) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{1}{3} (-A b-a B) \int \sqrt{\sec (c+d x)} \, dx-\frac{1}{5} \left ((-5 a A-3 b B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 (5 a A+3 b B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{1}{3} \left ((-A b-a B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 (5 a A+3 b B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 (A b+a B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 b B \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 (A b+a B) \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.527425, size = 108, normalized size = 0.73 \[ \frac{\sqrt{\sec (c+d x)} \left (\sin (2 (c+d x)) (5 a B+5 A b+3 b B \cos (c+d x))+10 (a B+A b) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+6 (5 a A+3 b B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*(5*a*A + 3*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 10*(A*b + a*B)*Sqrt[Cos[
c + d*x]]*EllipticF[(c + d*x)/2, 2] + (5*A*b + 5*a*B + 3*b*B*Cos[c + d*x])*Sin[2*(c + d*x)]))/(15*d)

________________________________________________________________________________________

Maple [B]  time = 3.483, size = 371, normalized size = 2.5 \begin{align*} -{\frac{2}{15\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -24\,Bb\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 20\,Ab+20\,aB+24\,Bb \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) + \left ( -10\,Ab-10\,aB-6\,Bb \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +5\,A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}b-15\,A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}a+5\,B{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}a-9\,B{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}b \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*B*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+(20*A*b+20*B*a+24*B*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*A*b-10*B*a-6*B*b)*sin(1/2*d*x+1/2*c)^2*co
s(1/2*d*x+1/2*c)+5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*b-15*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*a+5*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*a-9*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B b \cos \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \cos \left (d x + c\right )}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \cos{\left (c + d x \right )}\right ) \left (a + b \cos{\left (c + d x \right )}\right )}{\sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))/sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)